Les interactions parasites eucaryotes-hôtes:

l'exemple de Leishmania

Geneviève Milon

Leishmania major: first recognized as the etiological agent of "transient pathogenic processes" in humans

Leishmania major within its mammalian hosts: first recognized as the etiological agent of "transient pathogenic processes" when the latter deploy

39

Leishmania major within its mammalian hosts

Therefore what do we need to consider?

For further deciphering this complexity what do we need to consider?

The features of the natural ecosystems on which relies the *Leishmania/L*. perpetuation:

a first example anchored to *L.major* in its natural ecosystem

Leishmania major in its natural ecosystem

Sand fly, an adult insect blood-feeding female: the production of its progeny relies on a singular life trait namely the blood of a vertebrate most often a mammal

E and E.Sergent

Alger

Fig. 2. Bautan d'étrient et phiébolomes.
Unes, larves et nymphes de phiébolomes dans des feutiles en décomposition : temelle adulle.
Dans le cartouche : Leiskmapia tropica intra et extracululaires.
Cette figure, comme plus luin celle du debals, fait partie d'une collection de dession somi-schémuliques destinés à l'enscignement.

Leishmania major in its natural ecosystem

Leishmania major in its natural ecosystem

Alger

Thus it was possible to establish that *Leishmania* major does subvert two organisms from different taxa as hosts

The mouse model designed with the objectives to mimic the features of the natural ecosystem

A fascinating example of tissue remodeling imposed by Leishmania

The features of the natural ecosystems on which relies the *Leishmania/L*. perpetuation:

a second example L.amazonensis

The context: Leishmania amazonensis developmental biology

The context: Leishmania amazonensis developmental biology

In the insect gut lumen complex stepwise developmental programs cell -cycling non cell cycling

INSTITUT PASTEUR

Leishmania amazonensis developmental biology

L.amazonensis within mouse macrophages

Day 0: 4 amastigotes / macrophage

L. amazonensis within mouse macrophages

Affymetrix core facility at Génopole - PF2

Biological interaction network analysis

Polyamine pathway overrides iNOS pathway

Macrophages subverted as bona fide host cells

Cell-cycling amastigotes within macrophages:

Exploit the sterol and fatty acid pathways to multiply efficiently

Override iNOS pathway to produce polyamines thus favoring their growth

Create a safe niche:

prevention of macrophage apoptosis

prevention of inflammatory signalling

prevention of T-lymphocyte stimulation

ور

Metacyclic promastigotes

Luciferase transgenic Lamzonensis

In vitro culture of promastigotes from frozen amastigote stocks

Intradermal inoculation (ear) low dose of promastigotes

C57BL/6 mice

BALB/c mice

The mouse-based models designed with the objectives to mimic as closely as possible the developmental biology of *Leishmania*

Real time dynamic imaging of both

- -parasite developmental biology and tissue remodelling
- -host signatures at the <u>tissue level</u> fed by in vitro a,nd ex vivo approaches-

Perspectives back to in vivo/ex vivo settings

Perpectives

Non cell-cycling within dermal dendritic leukocytes? Cell-cycling Biosafety level 2 containment

cell sorting core facility

Acknowledgements

« Plate-Forme Puces à ADN » , Institut Pasteur

Béatrice Regnault Jean-Yves Coppée

« Plate-Frome Cytométrie », Institut Pasteur

Anne-Marie Balazuc Hélène Kiefer-Biasizzo

École Normale Supérieure de Paris

Clarisse Davory

Acknowledgements

Acknowledgements

This project is funded by

Le Fonds Dédié « Combattre les maladies parasitaires »

Acknowledgements

Votre attention est appréciée. Merci